09
2021
01

搜集了一下用于深度学习deeplearning的人脸数据集Face Dataset

Face Landmark Detection Dataset

1、300W

paper: https://ibug.doc.ic.ac.uk/media/uploads/documents/sagonas_iccv_2013_300_w.pdf

dataset: https://ibug.doc.ic.ac.uk/resources/300-W/

2、COFW

occluded to different degrees

paper: https://www.microsoft.com/en-us/research/wp-content/uploads/2013/12/BurgosArtizzuICCV13rcpr.pdf

3、AFLW

faces with large head pose up to 120◦ for yaw and 90◦ for pitch and roll.

人类面部关键点的数据集,总共约有25k张脸,每幅图像标注了大约21个位置

paper: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.384.2988&rep=rep1&type=pdf

dataset: https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/aflw/

4、WFLW

from wider face dataset

paper: https://arxiv.org/pdf/1805.10483.pdf

dataset: https://wywu.github.io/projects/LAB/WFLW.html

Face Morphable Model

1、Basel Face Model(BFM)

paper:  http://gravis.dmi.unibas.ch/publications/2009/BFModel09.pdf

dataset: https://faces.dmi.unibas.ch/bfm/bfm2019.html

realted

morphable model viewer: https://github.com/unibas-gravis/basel-face-model-viewer

Registration Pipeline: https://github.com/unibas-gravis/basel-face-pipeline

2、Large Scale Facial Model (LSFM)

paper:  https://ibug.doc.ic.ac.uk/media/uploads/documents/0002.pdf

dataset: https://ibug.doc.ic.ac.uk/resources/lsfm/

3、Surrey Face Model

dataset:https://www.cvssp.org/faceweb/3dmm/facemodel/

Face Detection Dataset

1、FDDB

 FDDB contains the annotations for 5,171 faces in a set of 2,845 images.

paper:http://vis-www.cs.umass.edu/fddb/fddb.pdf

dataset: http://vis-www.cs.umass.edu/fddb/index.html#download

2、Wider Face

WIDER FACE is proposed for face detection in the "more" wild enviroments. It contains 32,203 images and 393,703 faces.

paper: https://arxiv.org/pdf/1511.06523.pdf

dataset: http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/index.html

3、MAFA

occlusion

paper: http://openaccess.thecvf.com/content_cvpr_2017/papers/Ge_Detecting_Masked_Faces_CVPR_2017_paper.pdf

dataset: http://www.escience.cn/people/geshiming/mafa.html

4、4k face dataset

hight resolution

paper: https://arxiv.org/pdf/1804.06559.pdf

5、Unconstrained Face Detection Dataset (UFDD)

different weather

paper:  https://arxiv.org/abs/1804.10275

dataset: https://github.com/hezhangsprinter/UFDD

6、wildest faces

paper: https://arxiv.org/pdf/1805.07566.pdf

7、Multi-Attribute Labelled Faces (MALF)

MALF is the first face detection dataset that supports fine-gained evaluation. It consists of 5,250 images and 11,931 faces.

paper:  http://www.cbsr.ia.ac.cn/faceevaluation/faceevaluation15.pdf

dataset: http://www.cbsr.ia.ac.cn/faceevaluation/#reference

8、IJB-A Dataset

 IJB-A is proposed for face detection and face recognition. It contains 24,327 images and 49,759 faces.

paper: https://zhaoj9014.github.io/pub/IJBA_1N_report.pdf

dataset: https://www.nist.gov/itl/iad/image-group/ijb-dataset-request-form

9、MICC

包含了3D人脸扫描和在不同分辨率,条件和缩放级别下的几个视频序列的数据库,有53个人的立体人脸数据

dataset: 链接 https://www.micc.unifi.it/resources/datasets/florence-3d-faces/

Face Recognition Dataset

Racial Faces in-the-Wild: RFW

paper: http://openaccess.thecvf.com/content_ICCV_2019/papers/Wang_Racial_Faces_in_the_Wild_Reducing_Racial_Bias_by_Information_ICCV_2019_paper.pdf

dataset: http://www.whdeng.cn/RFW/index.html

Age Estimation Dataset

1、IMDB-WIKI

paper: https://www.vision.ee.ethz.ch/en/publications/papers/articles/eth_biwi_01299.pdf

dataset: https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/

2、CACD (Cross-Age Reference Coding for Age-Invariant Face Recognition and Retrieval)

paper:  http://cmlab.csie.ntu.edu.tw/~sirius42/papers/chen14eccv.pdf

dataset: https://bcsiriuschen.github.io/CARC/

3、Adience dataset

datset: https://talhassner.github.io/home/projects/Adience/Adience-data.html

statistic: Total number of images: 26,580 Total number of subjects: 2,284 Number of age groups: 8 (0-2, 4-6, 8-13, 15-20, 25-32, 38-43, 48-53, 60-) Gender labels: Yes In the wild: Yes Subject labels: Yes

4、UTK-Face

datset: https://susanqq.github.io/UTKFace/

5、APPA-REAL (real and apparent age)

paper: http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w48/Clapes_From_Apparent_to_CVPR_2018_paper.pdf

dataset: http://chalearnlap.cvc.uab.es/dataset/26/description/

Face Forensics

1、FaceForensics++

paper: https://arxiv.org/pdf/1901.08971.pdf

datset: https://github.com/ondyari/FaceForensics

2、Celeb-DF

paper: https://arxiv.org/pdf/1909.12962.pdf

datset: http://www.cs.albany.edu/~lsw/celeb-deepfakeforensics.html

3、The Deepfake Detection Challenge (DFDC) Preview Dataset

paper: https://arxiv.org/pdf/1910.08854.pdf

datset: https://deepfakedetectionchallenge.ai/

4、DeeperForensics-1.0

paper: https://arxiv.org/pdf/2001.03024.pdf

datset: https://liming-jiang.com/projects/DrF1/DrF1.html

5、Kinship Verification

TALking KINship (TALKIN)

paper: http://www.cs.joensuu.fi/pages/tkinnu/webpage/pdf/audio_visual_kinship_ICB2019.pdf

6、Families In the Wild: A Kinship Recognition Benchmark (FIW)

paper: https://web.northeastern.edu/smilelab/fiw/papers/tpami-final.pdf

dataset: https://web.northeastern.edu/smilelab/fiw/


版权声明:本文为期权记的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

原文链接:https://www.qiquanji.com/post/9694.html

« 上一篇 下一篇 »

发表评论:

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。